Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene.
نویسندگان
چکیده
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU), and it is suggested that patients with a partial deficiency of this enzyme are at risk for developing a severe 5FU-associated toxicity. To evaluate the importance of this specific type of inborn error of pyrimidine metabolism in the etiology of 5FU toxicity, an analysis of the DPD activity, the DPD gene, and the clinical presentation of patients suffering from severe toxicity after the administration of 5FU was performed. Our study demonstrated that in 59% of the cases, a decreased DPD activity could be detected in peripheral blood mononuclear cells. It was observed that 55% of patients with a decreased DPD activity suffered from grade IV neutropenia compared with 13% of patients with a normal DPD activity (P = 0.01). Furthermore, the onset of toxicity occurred, on average, twice as fast in patients with low DPD activity as compared with patients with a normal DPD activity (10.0 +/- 7.6 versus 19.1 +/- 15.3 days; P < 0.05). Analysis of the DPD gene of 14 patients with a reduced DPD activity revealed the presence of mutations in 11 of 14 patients, with the splice site mutation IVS14+1G-->A being the most abundant one (6 of 14 patients; 43%). Two novel missense mutations 496A-->G (M166V) and 2846A-->T (D949V) were detected in exon 6 and exon 22, respectively. Our results demonstrated that at least 57% (8 of 14) of the patients with a reduced DPD activity have a molecular basis for their deficient phenotype.
منابع مشابه
Identification of novel mutations in the dihydropyrimidine dehydrogenase gene in a Japanese patient with 5-fluorouracil toxicity.
5-Fluorouracil (5-FU) is used widely in the treatment of several common neoplasms. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-FU. Several recent studies have described a pharmacogenetic disorder in which cancer patients with decreased DPD activity develop life-threatening toxicity following exposure to 5-FU. We reported recently the firs...
متن کاملUnpredicted Severe Toxicity after 5-Fluorouracil Treatment due to Dihydropyrimidine Dehydrogenase Deficiency
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5-FU). Thus, patients with a DPD deficiency are at risk of developing severe 5-FU-associated toxicity. A 37-year-old female with gastric cancer underwent a curative operation, followed by adjuvant chemotherapy consisting of 5-FU and epirubicin. After the first cycle of chemotherapy...
متن کاملStructural organization of the human dihydropyrimidine dehydrogenase gene.
Deficiency of the pyrimidine catabolic enzyme, dihydropyrimidine dehydrogenase (DPD), has been shown to be responsible for a pharmacogenetic syndrome in which administration of 5-fluorouracil is associated with severe and potentially life-threatening toxicity. Following the recent availability of the cDNA for DPD, there were initial reports of several molecular defects (point mutations, deletio...
متن کاملFrequency of c.1905+1G>A Mutation in DPD Gene among Patients with Colorectal Cancer in Mazandaran Province
Background and purpose: 5-Flourouracil (5-FU) is one of the most common chemical drugs used in chemotherapy of patients with cancers. Dihydropyrimidine dehydrogenase (DPD) is a critical enzyme in the catabolism of 5-FU. More than 80% of the administered 5-FU is catabolized by DPD. c.1905+1G>A mutation on DPD gene is the most important mutation associated with DPD enzymatic deficiency which lead...
متن کاملLethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency.
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU), and it is suggested that patients with a partial deficiency of this enzyme are at risk from developing a severe 5FU-associated toxicity. In this study, we demonstrated that a lethal toxicity after a treatment with 5FU was attributable to a complete deficiency of DPD. Analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2000